
Similarity and Dissimilarity
Measures



Problem statement

Observed images

Try to find the most similar to image X from saved images!

Saved images

X Y1 Y2 Y… Yn



Problem statement (2)

Template

Try to find the best matching window in an observed image!

Observed image

X Y1

Y2 Y… Yn

Windows



More general statement

• X and Y are sets (doesn’t have to be images)

• Find a measure/metric on how similar X and Y are.



Images

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8

𝑥9 𝑥10 𝑥11 𝑥12

𝑥13 𝑥14 𝑥15 𝑥16

𝑦1 𝑦2 𝑦3 𝑦4
𝑦5 𝑦6 𝑦7 𝑦8

𝑦9 𝑦10 𝑦11 𝑦12

𝑦13 𝑦14 𝑦15 𝑦16

X Y

We are often using 1D coordinates instead of 2D



Similarity measures

• Pearson correlation coefficient

• Tanimoto measure

• Stochastic sign change

• Deterministic sign change

• Minimum ratio

• Spearman’s rho

• Kendall’s tau

• Greates deviation

• Ordinal measure

• Correlation ratio

• Energy of joint probability
distribution

• Material similarity

• Shannon mutual information

• Rényi mutual information

• Tsallis mutual information

• F-Information measures



Pearson correlation coefficient

• 𝑟 =
 𝑖=1
𝑛 (𝑥𝑖−  𝑥)(𝑦𝑖− 𝑦)

 𝑖=1
𝑛 (𝑥𝑖−  𝑥)

2
∗  𝑖=1

𝑛 𝑦𝑖− 𝑦 2

, 𝑟 =
 𝑥𝑑𝑖𝑓𝑓∗𝑦𝑑𝑖𝑓𝑓

𝑥𝑑𝑖𝑓𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗𝑦𝑑𝑖𝑓𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

•  𝑥 =
1

𝑛
 𝑖=1

𝑛 𝑥𝑖,     𝑦 =
1

𝑛
 𝑖=1

𝑛 𝑦𝑖,       The moment of x and y (average)

• 𝑟 =
1

𝑛
 

𝑥𝑖−  𝑥

𝜎𝑥

𝑦𝑖−  𝑦

𝜎𝑦

• r = 1 -> perfect positive correlation

• r = -1 -> perfect negative correlation



Pearson correlation coefficient (2)

• Can be extended to work with different rotation [1] and scale [2,3]

[1] De Castro, E., Morandi, C.: Registration of translated and rotated images using finite Fourier
transforms. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 700–703 (1987)

[2] Chen, Q.-S.: Matched filtering techniques. In: Le Moigne, J., Netanyahu, N.S., Eastman,
R.D. (eds.) Image Registration for Remote Sensing, pp. 112–130. Cambridge University
Press, Cambridge (2011)

[3] Reddy, B.S., Chatterji, B.: An FFT-based technique for translation, rotation and scale invariant
image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)



Pearson correlation coefficient (optimizations
for template matching)
• Require data is 2D image

• 𝐶 = 𝐹−1 𝐹 𝑋 ∗ 𝐹∗ 𝑌

• Phase correlation:

• 𝐶𝑝 = 𝐹−1 𝐹∘𝐺∗

𝐹∘𝐺∗

• Convolution/correlation 
corresponds to multiplication 
in frequency space!

• To be explained

• ∘ - The Hadamard product



Pearson correlation coefficient (Phase
correlation)
• From signal processing, we know… (probably not):

• A shift in image space corresponds a phase multiplication in frequency space

• Shift: 𝑓 𝑥 − Δ𝑥 → Multiply: 𝐹 𝑥 𝑒𝜙. 𝜙 is some phase stuff

• 𝑔𝑏 𝑥, 𝑦 = 𝑔𝑎 𝑥 − Δ𝑥 𝑚𝑜𝑑 𝑀, 𝑦 − Δ𝑦 𝑚𝑜𝑑 𝑁

• 𝐺𝑏 𝑢, 𝑣 = 𝐺𝑎𝑒
−2𝜋𝑖

𝑢Δ𝑥

𝑀
+

𝑣Δ𝑦

𝑁

[4]: Wikipedia | Phase correlation | https://en.wikipedia.org/wiki/Phase_correlation

https://en.wikipedia.org/wiki/Phase_correlation


Pearson correlation coefficient (Phase
correlation derivation)

• 𝑅 𝑢, 𝑣 =
𝐺𝑎∘𝐺𝑏

∗

𝐺𝑎∘𝐺𝑏
∗

• =
𝐺𝑎∘𝐺𝑎

∗𝑒
−2𝜋𝑖

𝑢Δ𝑥
𝑀 +

𝑣Δ𝑦
𝑁

𝐺𝑎∘𝐺𝑎
∗𝑒

−2𝜋𝑖
𝑢Δ𝑥
𝑀 +

𝑣Δ𝑦
𝑁

• =
𝐺𝑎∘𝐺𝑎

∗𝑒
−2𝜋𝑖

𝑢Δ𝑥
𝑀 +

𝑣Δ𝑦
𝑁

𝐺𝑎∘𝐺𝑎
∗

• = stuff × 𝑒
−2𝜋𝑖

𝑢Δ𝑥

𝑀
+

𝑣Δ𝑦

𝑁

• Stuff has no phase, so transforming back gives only offset!

[4]: Wikipedia | Phase correlation | https://en.wikipedia.org/wiki/Phase_correlation

Doesn’t change length

https://en.wikipedia.org/wiki/Phase_correlation


Pearson correlation coefficient (Orientation
correlation)
• Use gradients to avoid problems with absolute level differences.

• 𝑋 → 𝑈𝑑 𝑥, 𝑦 = 𝑠𝑖𝑔𝑛
𝜕𝑋(𝑥,𝑦)

𝜕𝑥
+ 𝑗

𝜕𝑋(𝑥,𝑦)

𝜕𝑦

• 𝑌 → 𝑉𝑑 𝑥, 𝑦 = 𝑠𝑖𝑔𝑛
𝜕𝑌(𝑥,𝑦)

𝜕𝑥
+ 𝑗

𝜕𝑌(𝑥,𝑦)

𝜕𝑦

• Then apply fourier stuff on images.



Pearson correlation coefficient (Takeaway)

• Relatively simple operator and simple to understand.

• Can be extended to work with different scale and rotation.

• Consider using frequency space for large images. (Fourier transform)

• Consider using phase correlation for certain images.

• Consider using orientation correlation if images have significant level
differences.



Tanimoto Measure

• 𝑆𝑇 =
𝑋𝑡𝑌

𝑋 2+ 𝑌 2−𝑋𝑡𝑌
=

𝑋𝑡𝑌

𝑋−𝑌 +𝑋𝑡𝑌

• Gives the same result as Pearson correlation coefficient

• 𝑋 − 𝑌 corresponds to 𝜎𝑥𝜎𝑦 in the Pearsons coefficient.

• Division by 𝑋𝑡𝑌 corresponds to normalization regarding the mean in 
the Pearson coefficient.

• No need to calculate 𝜎𝑥and 𝜎𝑦.



Stochastic Sign Change

• Calculate difference image
• 𝐷 = 𝑥𝑖 − 𝑦𝑖 | 𝑖 = 1,… , 𝑛

• Count number of sign changes and 𝑥𝑖 = 𝑦𝑖

• If images are equal, only the noise is visible in D, which changes often.



Stochastic Sign Change



Stochastic Sign Change



Deterministic sign change

• Add «noise» to X «manually» and deterministic:
• 𝑧𝑖 = 𝑥𝑖 + 𝑞 −1 −1

• Calculate difference image:
• 𝐷 = 𝑧𝑖 − 𝑦𝑖 | 𝑖 = 1,… , 𝑛

• You can use training to optimize q.

• Is supposed to give better results than stockastic sign change [5]

[5] Venot, A., Devaux, J.Y., Herbin, M., Lebruchec, J.F., Dubertret, L., Raulo, Y., Roucayrol,
J.C.: An automated system for the registration and comparison of photographic images in
medicine. IEEE Trans. Med. Imaging 7(4), 298–303 (1988)



Minimum ratio

• 𝑟𝑖 = min
𝑦𝑖

𝑥𝑖
,
𝑥𝑖

𝑦𝑖

• 𝑚𝑟 =
1

𝑛
 𝑖=1

𝑛 𝑟𝑖

• This is a metric going from 0 to 1

• 𝑚𝑟 = 1 ⇒ Identical images

• Sensitive to noise. Insensitive to intensity differences.

• Paper proves that this is in fact a metric.



Metrics

• Limited range: 𝑆 𝑋, 𝑌 ≤ 𝑆0 for some 𝑆0 (for example 1).

• Reflexitivity: 𝑆 𝑋, 𝑌 = 𝑆0  𝑋 = 𝑌

• Symmetry: 𝑆 𝑋, 𝑌 = 𝑆 𝑌, 𝑋

• Triangle Inequality: 𝑆 𝑋, 𝑌 𝑆 𝑌, 𝑍 ≤ 𝑆 𝑋, 𝑌 + 𝑆 𝑌, 𝑍 𝑆(𝑋, 𝑍)



Pixel rank

• 𝑅 𝑥𝑖 is the rank of pixel.

• Given all unique pixel values, the rank is the index in a list if the pixel
values were sorted.

• Unique pixel values required: Solve ties between pixels by smoothing
with a small filter.
• Gaussian blur with 𝜎 ≈ 1



Rank example

3.4 43 45 32

23 231 1 41

125 12 214 124

15 21 51 24

2 10 11 9

6 16 1 8

14 3 15 13

4 5 12 7

Image Rank image



Spearman’s Rho

• Assuming unique ranks.

• 𝜌 = 1 −
6  𝑖=1

𝑛 𝑅 𝑥𝑖 −𝑅 𝑦𝑖
2

𝑛 𝑛2−1

• Equivalent of calculating pearson correlation coefficient with unique 
rankings.



Spearman’s Rho (Some results)

• Compared to pearsons correlation coefficient
• Better for impulse noise.

• Slightly better for intensity differences.

• Because pixels must be sorted, it is computationally heavier than previous
methods.

[6] Ayinde, O., Yang, Y.-H.: Face recognition approach based on rank correlation of gaborfiltered
images. Pattern Recognit. 35, 1275–1289 (2002)
[7] Muselet, D., Trémeau, A.: Rank correlation as illumination invariant descriptor for color
object recognition. In: Proc. 15th Int’l Conf. Image Processing, pp. 157–160 (2008)



Kendall’s Tau

• Concordance: 𝑠𝑖𝑔𝑛 𝑥𝑗 − 𝑥𝑖 = 𝑠𝑖𝑔𝑛 𝑦𝑗 − 𝑦𝑖 , 𝑗 ≠ 𝑖

• Discordance: 𝑠𝑖𝑔𝑛 𝑥𝑗 − 𝑥𝑖 = −𝑠𝑖𝑔𝑛 𝑦𝑗 − 𝑦𝑖 , 𝑗 ≠ 𝑖

• 𝑁𝑐 − Number of pairs of concordances for all valid pairs of 𝑖 and 𝑗.

• 𝑁𝑑 − Number of pairs of discordances for all valid pairs of 𝑖 and 𝑗.

• Kendalls’s tau: 𝜏 =
𝑁𝑐−𝑁𝑑

𝑛(𝑛−1)/2



Kendall’s Tau (2)

• Very computationally heavy

• Same discriminative power as spearman’s rho.

• More «strict» than Pearson correlation coefficient



Greatest deviation

• Assuming image with unique intensities giving a rank image.

• 𝑑𝑖 =  𝑗=1
𝑖 𝐼 𝑅(𝑥𝑖) ≤ 𝑖 < 𝑅(𝑦𝑗)

• 𝐷𝑖 =  𝑗=1
𝑖 𝐼 𝑛 + 1 − 𝑅 𝑥𝑖 > 𝑅 𝑦𝑖

• 𝑅𝑔 =
max

𝑖
𝐷𝑖 −max

𝑖
(𝑑𝑖)

𝑛

2

• 𝑅𝑔 varies between -1 and 1.

• Less sensitive to impulse noise than 𝑟

• Computationally heavy.



Ordinal measure

• 𝐷𝑖 =  𝑗=1
𝑖 𝐼 𝑛 + 1 − 𝑅 𝑥𝑖 > 𝑅 𝑦𝑖 (as previously calculated)

• 𝑅𝑜 =
max

𝑖
𝐷𝑖

𝑛

2

• Half the computational expense as Greatest deviation (which is still 
quite a lot!)



Correlation ratio

• Similar images -> Y is a single valued function of X.

• How much does pixels in Y deviate from the same pixels in X given a 
pixel intensity in X?

• 𝜎𝑖 =
1

𝑛𝑖
 𝑥𝑖

𝑌 𝑥𝑖 − 𝑚𝑖
2

• 𝑚𝑖 =
1

𝑛𝑖
 𝑥𝑖

(𝑌[𝑥𝑖]) (or some other mean).

• We go over all pixels in X with intensity 𝑖, and calculate the deviation in Y on 
the corresponding pixel.

• In an image, we can calculate the mean scatter:

• 𝜎𝑚 =
1

256
 𝑖=0

255𝜎𝑖



Correlation ratio

• Calculate the variance of sigmas:

• 𝐷2 =
1

𝑛
 𝑖=0

255𝑛𝑖𝜎𝑖
2

• 𝑛 =  𝑖=0
255𝑛𝑖

• Calculate a similarity measure from variance from D

• 𝜂𝑦𝑥 = 1 − 𝐷2

• Works well for intensity differences in X and Y.

• Relatively expensive operator, but still linear.



Joint probability distribution

• Measure a pixel in X with intensity 𝑋𝑖

• Measure a pixel in Y at the same index with intensity 𝑌𝑖. (Can also be 
measured with an offset).

• Increment pixel 𝑋𝑖 , 𝑌𝑖 in JD image.

• Obtain final JPD by dividing JD by n. (Divide by the number of pixles in 
the image to get the probability)



Joint probability distribution (Example)

1 2 3 4
2 2 3 4
6 5 2 1
7 7 1 1

2 3 2 4
1 1 2 5
6 5 4 3
5 7 2 1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

X Y

JD

Intensities in X as index

Intensities in Y as index



Energy of Joint Probability Distribution

• Calculate JDP of image.

• Calculate energy
• 𝐸 =  𝑖=0

255 𝑗=0
255 𝑝𝑖𝑗

2

• 𝑝𝑖𝑗 is the pixel in the JPD with index (𝑖, 𝑗)

• Can handle intensity transformations and translations. 

• A relatively cheap operation.

• Not a metric 



Energy of Joint Probability Distribution 
(Example from paper)

[8] Goshtasby, A.A | Chapter 2
Similarity and Dissimilarity Measures F | Book: Image Registration
Principles, tools and methods | SPRINGER



Energy of Joint Probability Distribution (My 
example)

Some image matched against images of trees in airplane photos



Energy of Joint Probability Distribution (My 
example)

Some image matched against images of not trees in airplane photos



Material similarity

• Problem with Energy of Joint Probability Distribution:
• Noise gives a «spread out» distribution in the JDP

• Solution:
• Use material similarity.



Material similarity

• Construct two JPD’s. 
• One visiting every k’th pixel in the image, starting from 0.
• One visiting every k’th pixel in the image, starting from k/2.
• We are kind of calculating JPD’s of subsampled images from different subsamples (a 

strange subsampling!?)

• Two similar images will have similar JPD’s of this kind

• Material similarity: 𝑆𝑚 =  𝑖=0
255 min 𝑝𝑖𝑗1 ,𝑞𝑖𝑗2

𝑗1−𝑗2 +𝑑

• P is JDP constructed starting from 0.
• Q is JDP constructed starting from k/2
• 𝑝𝑖𝑗2 , 𝑞𝑖𝑗2 pixel at P and Q at positions (𝑖, 𝑗2) in P and (𝑖, 𝑗2) in Q

• 𝑗1, 𝑗2 is the row number in P and Q which contains the peak of index 𝑖



1 2 4 3
7 6 5 4
2 2 2 3
6 5 4 1

Material similarity

X, Y

JDP JDP

P

X, Y

Q

1 2 4 3
7 6 5 4
2 2 2 3
6 5 4 1



Material similarity

P

Q

Smooth

Smooth

[8] Goshtasby, A.A | Chapter 2
Similarity and Dissimilarity Measures F | Book: Image Registration
Principles, tools and methods | SPRINGER



Material similarity

Peaks

Peaks

P

Q

[8] Goshtasby, A.A | Chapter 2
Similarity and Dissimilarity Measures F | Book: Image Registration
Principles, tools and methods | SPRINGER



Material similarity

Note: There is no
joining in the actual
algorithm. This last 
slide is solely for 
demonstration
purposes, to show 
how similar images 
might look in this
space.

[8] Goshtasby, A.A | Chapter 2
Similarity and Dissimilarity Measures F | Book: Image Registration
Principles, tools and methods | SPRINGER

P

Q



Material similarity (Summary)

• Better for noise than «Energy of Joint Probability Distribution»

• Relatively cheap computation



Shannon mutual information

• History: Register multimodal images.

• Mutial information: Measure the disparity of the JPD of X and Y.

• 𝑆𝑀𝐼 =  𝑖=0
255 𝑗=0

255 𝑝𝑖𝑗 log2
𝑝𝑖𝑗

𝑝𝑖𝑝𝑗
= 𝐸𝑖 + 𝐸𝑗 − 𝐸𝑖𝑗

• 𝐸𝑖 = − 𝑗=0
255 𝑝𝑗 log2 𝑝𝑗

• 𝐸𝑗 = − 𝑖=0
255𝑝𝑖 log2 𝑝𝑖

• 𝐸𝑖𝑗 = − 𝑖=0
255𝑝𝑖𝑗 log2 𝑝𝑖𝑗

• 𝑝𝑖 =  𝑗=0
255 𝑝𝑖𝑗 Probability of intensity 𝑖 in image X

• 𝑝𝑗 =  𝑖=0
255𝑝𝑖𝑗 Probability of intensity j in image 𝑌



Shannon mutual information

• Using entropy measures. (disparity)

• Sensitive to noise

• Relatively low computational cost

• A very popular similarity measure

• Lots of variations exist
• High-order mutual information: Calculate JDP with offsets in j and i.

• Variations using gradients, point coordinates, phase etc.

• Used for multiresolution, monomodal, dynamic images, etc. 



Rényi mutual information

• Another measure of entropy: Rényi entropy

• 𝐸𝛼 =
1

1−𝛼
log2  𝑖=0

255𝑝𝑖
𝛼 , This is Rényi entropy over probability distribution P

• log2 𝑝𝑚𝑎𝑥 ≤ 𝐸𝛼 ≤ log2 256 , 𝑝𝑚𝑎𝑥 = max
𝑝𝑖𝜖𝑃

(𝑝𝑖)

• Rényi mutial information:

• 𝑅𝛼 =
𝐸𝛼
𝑖 +𝐸𝛼

𝑗

𝐸𝛼
𝑖𝑗

• 𝐸𝛼
𝑖 is the Rényi entropy of the distribution 𝑝𝑖 =  𝑗=0

255 𝑝𝑖𝑗 for 𝑖 = 1,… , 255

• 𝐸𝛼
𝑗

is the Rényi entropy of the distribution 𝑝𝑖 =  𝑖=0
255𝑝𝑖𝑗 for j = 0,… , 255

• 𝐸𝛼
𝑖𝑗

is the Rényi entropy of the distribution {𝑝𝑖𝑗: 𝑖, 𝑗 = 0,… , 255}



Rényi mutual information (2)

• Choise of 𝛼 magnifies higher values in JDP which reduces the effect of 
outliers
• It’s therefore better for impulse noise

• Slightly heavier to compute than “Shannon mutual information”



Tsallis mutual information

• Yet another entropy mutual information!

• Tsallis entropy:

• 𝑆𝑞 =
1

𝑞−1
1 −  𝑖=0

255 𝑗=0
255 𝑝𝑖𝑗

𝑞

• Tsallis mutual information:

• 𝑅𝑞 = 𝑆𝑞
𝑖 + 𝑆𝑞

𝑗
+ 1 − 𝑞 𝑆𝑞

𝑖𝑆𝑞
𝑗
− 𝑆𝑞

• 𝑆𝑞
𝑖 =

1

𝑞−1
 𝑗=0

255 𝑝𝑖𝑗 1 − 𝑝𝑖𝑗
𝑞−1

• 𝑆𝑞
𝑗
=

1

𝑞−1
 𝑖=0

255𝑝𝑖𝑗 1 − 𝑝𝑖𝑗
𝑞−1



Tsallis mutual information

• 𝑞 > 1 → Outliers are less important. No logarithmic function.

• Less sensitive to noise than Rényi

• Computation is relatively cheap (the same as Rényi)

• Value of q depends on the application.



F-Information measure (𝐼𝛼)

• 𝐼𝛼 =
1

𝛼 𝛼−1
 𝑖=0

255 𝑗=0
255 𝑝𝑖𝑗

𝛼

𝑝𝑖𝑝𝑗
𝛼−1 − 1 , 𝛼 ≠ 0, 𝛼 ≠ 1

• Approaches Shannon information as 𝛼 approaches 1



F-Information measure (𝑀𝛼)

• 𝑀𝛼 =  𝑖=0
255 𝑗=0

255 𝑝𝑖𝑗
𝛼 − 𝑝𝑖𝑝𝑗

𝛼
1

𝛼
, 0 < 𝛼 ≤ 1



F-Information measure (𝜒𝛼)

• 𝜒𝛼 =  𝑖=0
255 𝑗=0

255 𝑝𝑖𝑗−𝑝𝑖𝑝𝑗
𝛼

𝑝𝑖𝑝𝑗
𝛼−1 , 𝛼 > 1



F-Information measure some notes

• Relatively cheap computations

• Choose an 𝛼 that best matches the application



Operator summary

• 𝑟 - Pearson correlation coefficient

• 𝑆𝑇 - Tanimoto Measure

• 𝐷𝑠 - Stochastic Sign Change

• 𝐷𝑑 – Deterministic Sign Change

• 𝑚𝑟 – Minimum ratio

• 𝜌 – Spearman’s Rho

• 𝜏 – Kendall’s Tau

• 𝑅𝑔- Greates deviation

• 𝑅𝑜 - Ordinal measure

• 𝜂𝑦𝑥 - Correlation Ratio

• 𝐸 – Energy of joint probability
distribution

• 𝑆𝑚 - Material similarity

• 𝑆𝑀𝐼 - Shannon mutual information

• 𝑅𝛼 - Rényi mutual information

• 𝑅𝑞 - Tsallis mutual information

• 𝐼𝛼 , 𝑀𝛼 , 𝜒𝛼 - F-information



Computation summary

• 𝑟 – Cheap, 𝑂 𝑛

• 𝑆𝑇 - Cheap, 𝑂 𝑛

• 𝐷𝑠 – Cheap, 𝑂 𝑛

• 𝐷𝑑 – Cheap, 𝑂 𝑛

• 𝑚𝑟 – Cheap, 𝑂 𝑛

• 𝜌 – Quite cheap, 𝑂 𝑛 log2 𝑛

• 𝜏 – Expensive, 𝑂 𝑛2

• 𝑅𝑔- Expensive, n log2n + 𝑂 𝑛2

• 𝑅𝑜 - Expensive, n log2n + 𝑂 𝑛2

• 𝜂𝑦𝑥 - Quite cheap, 256 ⋅ 𝑂 𝑛

• 𝐸 – Cheap, 2562 + 𝑂(𝑛)

• 𝑆𝑚 - Cheap, 2562 + 𝑂 𝑛

• 𝑆𝑀𝐼 - Cheap, 2562 + 𝑂 𝑛

• 𝑅𝛼 - Cheap, 2562 + 𝑂 𝑛

• 𝑅𝑞 - Cheap, 2562 + 𝑂 𝑛

• 𝐼𝛼 , 𝑀𝛼 , 𝜒𝛼 - Cheap, 2562 +
𝑂 𝑛



How the different measures relate

• 𝑟 and 𝑆𝑇 gives the same results. Standard deviation instead of
squared euclidian distance and normalizing by their means instead of
the inner product.

• 𝜌 = calculate 𝑟 over Ranks of X and Y

• 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑋, 𝑌 is normally distributed → 𝑟 = sin
𝜋𝜏

2

• X and Y are independent →
𝜌

𝜏
→

3

2
𝑎𝑠 𝑛 → ∞. They have the same 

discrimination power. However, both 𝜌 and 𝜏 vary between -1 and 1.

• Linear intensity transformation from X to Y → 𝜂2 − 𝑟2 = 0



How the different measures relate (2)

• 𝐸𝛼 → 𝑆𝑀𝐼 𝑤ℎ𝑒𝑛 𝛼 → 1

• 𝑆𝑞 → 𝑆𝑀𝐼 𝑤ℎ𝑒𝑛 𝑞 → 1

• 𝐼𝛼 → 𝑆𝑀𝐼 𝑤ℎ𝑒𝑛 𝛼 → 1



Experimental setup
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Experimental setup

[8] Goshtasby, A.A | Chapter 2
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Noisy images Intensity transforms



Experimental setup (2)

[8] Goshtasby, A.A | Chapter 2
Similarity and Dissimilarity Measures F | Book: Image Registration
Principles, tools and methods | SPRINGER



Experimental setup (2)

[8] Goshtasby, A.A | Chapter 2
Similarity and Dissimilarity Measures F | Book: Image Registration
Principles, tools and methods | SPRINGER

Multimodal images Blurred image

Different exposure



Experimental setup (3)
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Experimental setup (3)

[8] Goshtasby, A.A | Chapter 2
Similarity and Dissimilarity Measures F | Book: Image Registration
Principles, tools and methods | SPRINGER

Stereo images

Stereo images



Experimental setup (4)

• All possible windows of size 31 in first image is searched for in the
other image.

• For stereo images only a horizontal search is perfomed.

• On certain operators, weighting is used. Gaussian mask. JPDs are also
weighted based on distance to center.

• RMSID used for stereo images.

• Result: How many pixels are correctly matched between images.



Results (accuracy)

Noise More Noise Most Noise Lin trans Sin trans



Results (accuracy)
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Results (2) (accuracy)

Sin trans Mult. Mod. Diff. Expos. Blur Stereo Stereo



Results (2) (accuracy)

Sin trans Mult. Mod. Diff. Expos. Blur Stereo Stereo



Results (3) (Larger templates)

• Larger templates gives the following:
• JPD based methods become slightly better (as do every measure, but most for 

JPD)

• Ordinal measure also become slightly better (Spearman’s rho)

• Sign-change, minimum ratio, correlation ratio, incremental sign distance and 
rank distance least affected by the increase.



Results (4) (Performance)
Small template Large template

Note: These are a 
lot faster on
stereo images



Some notes on preprocessing

• Normalize pixels before running JPD

• Smooth images to reduce noise (or median filter etc.)

• Adaptive smoothing can be used.

• Rank transform.
• Replace the center pixel with the number of pixels in the neighbourhood that

is smaller than the center pixel.

• Might improve accuracy on intensity transformed images.



Rank transform

0 0 1 3 2 4 5 6
1 7 5 4 5 1 2 5
4 1 2 5 5 2 1 7
5 4 8 4 6 5 1 2
0 9 4 5 1 2 6 5
4 0 4 8 2 0 5 0
𝑞 7 9 1 0 8 1 5
7 1 8 4 7 8 5 1

0 0 1 3 2 4 5 6
1 7 5 4 5 1 2 5
4 1 2 5 5 2 1 7
5 4 8 4 6 5 1 2
0 9 4 5 1 2 6 5
4 0 4 8 2 0 5 0
𝑞 7 9 1 0 8 1 5
7 1 8 4 7 8 5 1

… … … … … … … …
… … … … … … … …
… … 1 3 … … … …
… … … … … … … …
… … … … … … … …
… … … … … … … …
… … … … … … … …
… … … … … … … …

…



How to read the paper (suggestion)

• Look at images in experimentation section an look at what best fits
your application (Section 2.3.1 Experimental Setup).

• Look over the accuracy tables and performance tables on the
experiment image of choice. Select those that gives acceptable results
(section 2.4 Characteristics of Similarity/Dissimilarity Measures)

• If not clear, read section 2.5 (choosing a similarity/dissimilarity
measure)

• Read the algorithm’s section for implementation.

• Read the remaining part of what is required.



Conclusion

• There are many similarity/dissimilarity measures!

• Some are generally better than other, but it really depends on the
application
• Real time?
• Dataset size?
• Noise?
• Intensity differences?
• Modality?
• Shifted data?
• Performance?
• Code size?
• Is a metric required?


