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Today’s Agenda

⚫ “How to do Quantitative Empirical Research”:

− A big topic, even if we restrict ourselves to CS, AI, or ML

− With one hour at disposal, and trying not to rush, we have to focus 
on a certain key topics

⚫ I will focus on quantitative empirical research in:

− ML and BioAI – some key ideas 

− But I will try to paint a somewhat bigger picture than what you may 
have seen previously – emphasize workflow, different metrics, 
different perspectives, etc. 

⚫ Disclaimers:

− Many subfield of AI and ML have their own evaluation methods or 
metrics – make sure you know and use them

− In many areas, the quality of evaluation methods (metrics) are 
under debate

− Critical evaluation of metrics and developing new metrics can be 
very valuable research topics 

− I don’t drill down into the details of probability and statistics



ML Pipeline – Some Questions

Training
Data

(labelled/unlabelled)

Machine Learning 
Algorithm

Mathematical
Model

Model Smoothing
on Validation Data

Unseen 
Testing Data

Apply Model on 
Testing Data

Output

How to get 
raw data?  

How to get training 
data from raw data?  

How to present 
and visualize  

results?  

Which  
algorithms are 

“best”?  

Which 
mathematical 
models fit the 
application? 

How to 
evaluate?

3



Data Sets

• Lot’s of interesting data sets available:  
• Data is not the bottleneck is used to be just a few years ago

• Sign that you have a good data set: 
• A data set your sponsor, advisor, and you think is important

• Competition or challenge data sets (recent or currently active)

• New, exciting, timely, real-world, … data set

• Be careful with data sets that: 
• Do not exist yet (this is more than a data-collection course) 

• Require in-depth understanding of a technical/scientific area you do not 
currently understand at all (too time-consuming?)

• Are too simple (stay away from Statistics 101 data sets) 

• Do not exist in one of the commonly used file formats (there might not be time 
to write a complicated parser) 

• Have no documentation or support (you’ll be on your own)

• Are extremely large – unless you know how to handle this 
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From Raw Data to Training Data

Training
Data

(labelled/unlabelled)

Machine Learning 
Algorithm

Mathematical
Model

Model Smoothing
on Validation Data

How to get 
raw data?  

How to get training data 
from raw data?  

Preprocessing
Raw Data

(labelled/unlabelled)
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Which Algorithms? 

• Bayesians: learning as inference using - Bayes rule, Bayesian networks,  
and probabilistic graphical models [Duda & Hart, 1973] [Pearl, 1988] 
[Jelinek, 1997][Darwiche, 2009] [Koller & Friedman, 2009] [Blake, 2011]. 

• Symbolists: intelligence as symbol manipulation[Newell & Simon, 1976] 
[Michalski et al., 1983] [Breiman et al., 1984] [Quinlan, 1992]. 

• Analogizers:  learning by recognizing similarities [Boser et al., 1992] 
[Kolodner, 1993] [Cristianini & Shawe-Taylor, 2000].  

• Evolutionaries: use methods from evolution and genetics - evolutionary 
algorithms, genetic algorithms, and genetic programming [Darwin, 1859] 
[Holland, 1975] [Goldberg, 1989]. 

• Connectionists: reverse engineer the brain [Werbos, 1974] [Rumelhart & 
McClelland, 1986] [Bengio, 2009] [Goodfellow et al., 2016].

“Tribes” in machine  learning (and AI?) [Domingos, 2015]: 

Which  algorithm(s) is (are) “best” depends on your project –

data, goal, skills, resources, …   
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Machine Learning 

Experimentation and Evaluation
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Evaluation and Experimentation
• Evaluation using data: Training, validation, testing:

• “Simple”: Split original dataset into training data and test  data, use test data to 
evaluate accuracy of machine learning model

• “Complex”: Split original dataset into training data, validation data, and test data

• Evaluation baselines: 
• Other ML methods – “bakeoff”

• Experimental results from literature

• Comparison against theory 

• Evaluation by human experts

• Comparison to results achieved by other software (simulation)

• …

• Evaluation depends on project type: 
• Application-oriented project:  Models induced using different ML algorithms –

“solve application problem using different tools”  

• Method-oriented project: Datasets from different application areas –
“demonstrate generality of method across multiple data sets” 
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Evaluation

• Need a clear idea of what we are trying to achieve

• Should be able to connect the results of machine 
learning to the goal(s) of an organization (business)

• However, it is often difficult to measure the ultimate 
business goal(s), due to inadequate or complex data
• We can measure a surrogate in such cases

• Need to decide the surrogate through careful analysis

• In machine learning, the surrogate is often the ML model: 
• Created from a training data set + prior knowledge 

• Evaluated on a testing data set

• Here: focus on classifier as the ML model
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Evaluation: Overview

Training set: 
with labels

Test set: hide 
labels

Machine 
Learning
algorithm

Machine Learning 
classifier

Prediction of 
labels

• Focus on classifiers
• Evaluating classifiers: 

accuracy
• Other evaluation topics: 

• Unbalanced classes
• Cross-validation
• Area under the curve 

Correct?

YesNo

True positives,  

True negatives 

False positives, 

False negatives 
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Evaluating Binary Classifiers

• Assumption: binary (0/1, Yes/No, Positive/Negative) 
classification 

• Positives and negatives - in machine learning terminology: 
• Negatives are the uninteresting outcomes 

• Positives are the outcomes of interest (sometimes few)

• We have the following 4 possibilities:
• False Positives (FP): Test incorrectly reports a value as positive

• True Positives (TP): Test correctly reports a value as positive

• True Negatives (TN): Test correctly reports a value negative

• False Negatives (FN):Test incorrectly reports a value as negative

Our aim is to reduce FPs and FNs. The number of FPs may dominate the 
number of FNs, but the cost of mistakes made on FNs may be higher. (More 
about this later.) 
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Confusion Matrix

• Confusion Matrix :
• An n x n matrix for a classification problem with n classes

• For binary classification: 2 x 2 confusion matrix

• Main diagonal (green) contains the correct outputs of the 
classifier

False positive 

True positive 

True negative 

False negativePositive (1)

Negative (0)

Negative (0)Positive (1)

Predicted class

Actual 
class

Comes from 
binary 

classifier 

Comes from 
test data or 
“real world”
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Evaluation Metric: Accuracy

• Define (based on the confusion matrix): 
• TPs: Number of true positives 

• TNs: Number of true negatives 

• FPs: Number of false positives 

• FNs: Number of false negatives 

• Accuracy a - proportion of correct decisions

• A typical goal of machine learning is to maximize 
accuracy a and minimize error rate e

ea
FNsFPsTNsTPs

TNsTPs
−==

+++

+
1
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Beyond Accuracy

• Accuracy, and closely related metrics, are good 
starting points for evaluation

• However, there are some potential problems: 
1. Unbalanced classes

2. Desire to use “test data” during training

3. Sensitivity to varying parameters 

4. …

• Below we study these problems in some detail, and 
sketch solutions 
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Accuracy and Unbalanced Classes

• Is plain accuracy sufficient to evaluate a model?

• Perhaps not.  In classification problems where one 
class is rare, the class distribution becomes highly 
skewed
• E.g.: credit card transactions

• 100 transactions: 98 legitimate, 2 fraudulent

• Classifier classifies all transactions as legitimate 

• Accuracy a = 98/100 = 98%

• Is this a good classifier?
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Unequal Costs

• Simple classification accuracy makes no distinction 
between FPs and FNs

• In applications, the gravity of FPs versus FNs can vary 
significantly

• Examples: 
• In medical diagnosis: a FN (a disease was not caught) can 

be life threatening 

• In fraud detection: a FP (a transaction was flagged as 
fraudulent but was not) can affect customer relations and 
involve legal issues
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Expected Value

• Expected value is the weighted average of all possible 
outcomes, where the weight is the probability of 
occurrence

• Where: 
• oj is a possible decision outcome, 

• P(oj) s its probability, and 

• V(oj) is its value

Ev = P(oj )*V(oj )å
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Using Expected Value to Evaluate a 

Classifier

• How do we decide if a data driven decision is better 
than a decision taken intuitively? 

• Expected value can – given information about 
outcomes, probabilities, and their values – be used 
to determine best decisions for a particular model

• Expected value aggregates all possible outcomes to 
decide whom to target or where to spend
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Cross-Validation

Training Data

(labelled/unlabelled)

Statistical 
Learning 
Algorithm

Statistical 
Model

Model Smoothing
on Validation 

Data

Unseen 
Testing Data

Apply Model 
on 

Testing Data

Output

Comes from 
test data or 
“real world”

SELECTION
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Cross-Validation: Details 

• K-Fold Cross-validation:
• Create a K-fold partition of 

the dataset

• Perform K experiments as
• Use K-1 folds for training and 

the remaining one for testing

• Average error rate:

• A model selection technique: asses how the 
predictions will generalize to an independent 
dataset

Intelligent Sensor Systems

Ricardo Gutierrez-Osuna

Wright State University

7

K-Fold Cross-validation

Create a K-fold partition of the the dataset

For each of K experiments, use K-1 folds for training and the remaining 

one for testing 

K-Fold Cross validation is similar to Random Subsampling 

The advantage of K-Fold Cross validation is that all the examples in the 

dataset are eventually used for both training and testing

As before, the true error is estimated as the average error rate

Total number of examples

Experiment 1

Experiment 2

Experiment 3
Test examples

Experiment 4

å
=

=
K

1i

iE
K

1
E

Test examples

* http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf
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Leave-One-Out Cross Validation

• Degenerate case of K-Fold Cross Validation
• K = total number of examples (N)

• For a dataset with N examples, perform N 
experiments
• Use N-1 examples for training and the remaining example 

for testing

• Average error rate:

Intelligent Sensor Systems

Ricardo Gutierrez-Osuna

Wright State University

8

Leave-one-out Cross Validation

Leave-one-out is the degenerate case of K-Fold Cross 

Validation, where K is chosen as the total number of examples

For a dataset with N examples, perform N experiments

For each experiment use N-1 examples for training and the remaining 

example for testing

As usual, the true error is estimated as the average error rate on 

test examples

å
=

=
N

1i

iE
N

1
E

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Experiment N

Single test example
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Receiver Operating Characteristic (ROC)

• True positive rate: 
• TPR = TP / (TP + FN) 

• False positive rate: 
• FPR = FP / (FP + TN)

• ROC curve: TPR versus FPR –
the plot represents the 
performance of a binary 
classifier as its discrimination 
threshold is varied

• ROC analysis provides tools to 
select possibly optimal models

False Positive Rate (FPR)
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False 
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Area Under the Curve (AUC)

• Probability that a classifier will rank a randomly 
chosen positive instance higher than a randomly 
chosen negative one

• Classification analysis: which 
model predicts the classes 
best?

• Model with higher AUC

• Some research1 shows: AUC is 
noisy as a classification 
measure

1. Hanczar, Blaise; Hua, Jianping; Sima, Chao; Weinstein, John; 

Bittner, Michael; and Dougherty, Edward R. (2010); Small-sample 

precision of ROC-related estimates, Bioinformatics 26 (6): 822–830

http://stats.stackexchange.com/questions/132777/what-does-

auc-stand-for-and-what-is-it
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Summary

• Accuracy, and closely related metrics, are good 
starting points for evaluation

• Issues related to accuracy include: 
1. Unbalanced classes: 

2. Desire to use “test data” during training: cross-validation

3. Sensitivity to varying parameters

4. ….

• Other evaluation problems: User studies, evaluation 
of “business impact,” … 
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Questions?
Comments?
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Evolutionary Computing

Chapter 9

26

Eiben & Smith: Introduction to 

Evolutionary Computing (Natural 

Computing Series), 2nd ed., 2015. 

 



Companion slides for the book Bio-Inspired Artificial Intelligence: Theories, Methods, 

and Technologies by Dario Floreano and Claudio Mattiussi, MIT Press

Evolutionary Algorithm

• Devise genetic representation

• Build a population

• Design a fitness function

• Choose selection method

• Choose crossover & mutation

• Choose data analysis method

Repeat generation cycle until: 

• maximum fitness value is found

• solution found is good enough

• no fitness improvement for several generations

generation cycle

Evolutionary algorithms are applicable to any 

problem domain as long as suitable genetic 

representation, fitness, and genetic operators 

are chosen.



Chapter 9:

Working with Evolutionary Algorithms

• Experiment design

• Algorithm design

• Test problems

• Measurements and statistics

• Some tips and summary
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Experimentation

• Has a goal or goals 

• Involves algorithm design and implementation 

• Needs problem(s) to run the algorithm(s) on

• Amounts to running the algorithm(s) on the problem(s)

• Delivers measurement data, the results

• Is concluded with evaluating the results in the light of the 

given goal(s)

• Is often documented
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Experimentation:

Varying Goals

• Get a good solution for a given problem

• Show that EC is applicable in a (new) problem domain

• Show that my_EA is better than benchmark_EA

• Show that EAs outperform traditional algorithms (sic!)

• Find best setup for parameters of a given algorithm 

• Understand algorithm behavior (e.g. pop dynamics)

• See how an EA scales-up with problem size

• See how performance is influenced by parameters

• …
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Perspectives of goals

• Design perspective:

find a very good solution at least once

• Production perspective:

find a good solution at almost every run

• Publication perspective: 

must meet scientific standards

• Application perspective:

good enough is good enough

These perspectives have very different implications on 
evaluating the results (yet often left implicit)
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Example: Production Perspective

• Optimising Internet shopping 

delivery route

– Different destinations each day

– Limited time to run algorithm each day

– Must always be reasonably good route in limited time
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Example: Design Perspective

• Optimising spending on improvements to national road 

network

– Total cost: billions of Euro

– Computing costs negligible

– Six months to run algorithm on hundreds computers

– Many runs possible

– Must produce very good result just once
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Algorithm design

• Design a representation

• Design a way of mapping a genotype to a phenotype

• Design a way of evaluating an individual

• Design suitable mutation operator(s)

• Design suitable recombination operator(s)

• Decide how to select individuals to be parents

• Decide how to select individuals for the next generation 
(how to manage the population)

• Decide how to start: initialization method

• Decide how to stop: termination criterion
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Getting Problem Instances (1/3)

• Testing on real data

• Advantages:
– Results could be considered as very relevant viewed from the 

application domain (data supplier)

• Disadvantages
– Can be over-complicated

– Can be few available sets of real data

– May be commercial sensitive – difficult to publish and to allow 
others to compare

– Results are hard to generalize
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Getting Problem Instances (2/3)

• Standard data sets in problem repositories, e.g.:
– OR-Library

http://www.ms.ic.ac.uk/info.html

– UCI Machine Learning Repository
www.ics.uci.edu/~mlearn/MLRepository.html

• Advantage: 
– Well-chosen problems and instances (hopefully)

– Much other work on these → results comparable

• Disadvantage:
– Not real – might miss crucial aspect

– Algorithms get tuned for popular test suites
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Getting Problem Instances (3/3)

• Problem instance generators produce simulated data for 
given parameters, e.g.:
– GA/EA Repository of Test Problem Generators

http://www.cs.uwyo.edu/~wspears/generators.html

• Advantage:
– Allow very systematic comparisons for they

• can produce many instances with the same characteristics

• enable gradual traversal of a range of characteristics (hardness)

– Can be shared allowing comparisons with other researchers

• Disadvantage
– Not real – might miss crucial aspect

– Given generator might have hidden bias

37



Basic rules of experimentation

• EAs are stochastic →

never draw any conclusion from a single run 
– perform sufficient number of independent runs

– use statistical measures (averages, standard deviations) 

– use statistical tests to assess reliability of conclusions

• EA experimentation is about comparison →

always do a fair competition
– use the same amount of resources for the competitors

– try different comp. limits (to coop with turtle/hare effect)

– use the same performance measures   
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Things to measure - metrics

Many different ways. Examples:

• Average result in given time

• Average time for given result

• Proportion of runs within % of target

• Best result over n runs

• Amount of computing required to reach target in given 
time with % confidence

• …
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What time units do we use?

• Elapsed time? 
– Depends on computer, network, etc…

• CPU Time?
– Depends on skill of programmer, implementation, etc…

• Generations?
– Difficult to compare when parameters like population size 

change

• Evaluations?
– Evaluation time could depend on algorithm, e.g. direct vs. 

indirect representation
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Measures

• Performance measures (off-line)

– Efficiency (alg. speed)

• CPU time

• No. of steps, i.e., generated points in the search space

– Effectivity (alg. quality)

• Success rate

• Solution quality at termination

• “Working” measures (on-line)

– Population distribution (genotypic)

– Fitness distribution (phenotypic)

– Improvements per time unit or per genetic operator

– …
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Performance measures

• No. of generated points in the search space 

= no. of fitness evaluations 

(don’t use no. of generations!)

• AES: average no. of evaluations to solution

• SR: success rate = % of runs finding a solution 
(individual with acceptabe quality / fitness)

• MBF: mean best fitness at termination, i.e., best per run, 
mean over a set of runs
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Fair experiments

• Basic rule: use the same computational limit for each 
competitor

• Allow each EA the same no. of evaluations, but 
– Beware of hidden labour, e.g. in heuristic mutation operators

– Beware of possibly fewer evaluations by smart operators

• EA vs. heuristic: allow the same no. of steps:
– Defining “step” is crucial, might imply bias!

– Scale-up comparisons eliminate this bias
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Example: off-line performance measure 

evaluation 
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Statistical Comparisons and Significance

• Algorithms are stochastic, results have element of “luck”

• If a claim is made “Mutation A is better than mutation B”, 
need to show statistical significance of comparisons

• Fundamental problem: two series of samples (random 
drawings) from the SAME distribution may have 
DIFFERENT averages and standard deviations

• Tests can show if the differences are significant or not
– T-test: Are two sets of experimental results significantly different?

– F-test: Is there statistical difference between experimental results 
of three or more algorithms?

45

See Appendix B of Simon’s textbook 
for more on test these tests, and their 
application to EAs. 



Statistical tests

• T-test assumes:

– Data taken from continuous interval or close approximation

– Normal distribution

– Similar variances for too few data points

– Similar sized groups of data points

• Other tests: 

– Wilcoxon – preferred to t-test where numbers are small or 

distribution is not known.

– F-test – tests if two samples have different variances.
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Example: problem setting

• I invented myEA for problem X

• Looked and found 3 other EAs and a traditional 

benchmark heuristic for problem X in the literature

• Asked myself when and why is myEA better
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Example: experiments

• Found/made problem instance generator for problem X 
with 2 parameters:
– n (problem size)

– k (some problem specific indicator)  

• Selected 5 values for k and 5 values for n

• Generated 100 problem instances for all combinations

• Executed all alg’s on each instance 100 times 
(benchmark was also stochastic)

• Recorded AES, SR, MBF values w/ same comp. limit

(AES for benchmark?)

• Put my program code and the instances on the Web

48



Example: evaluation

• Arranged results “in 3D” (n,k) + performance 

(with special attention to the effect of n, as for scale-up)

• Assessed statistical significance of results 

• Found the niche for myEA: 
– Weak in … cases, strong in - - - cases, comparable otherwise

– Thereby I answered the “when question”

• Analyzed the specific features and the niches of each 
algorithm thus answering the “why question”

• Learned a lot about problem X and its solvers

• Achieved generalizable results, or at least claims with 
well-identified scope based on solid data

• Facilitated reproducing my results → further research
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Wrapping up: Some tips 

• Be organized

• Decide what you want & define appropriate measures

• Choose test problems carefully

• Make an experiment plan (estimate time when possible)

• Perform sufficient number of runs

• Keep all experimental data (never throw away anything)

• Use good statistics (“standard” tools from Web, MS, R)

• Present results well (figures, graphs, tables, …)

• Watch the scope of your claims

• Aim at generalizable results

• Publish code for reproducibility of results (if applicable)

• Publish data for external validation (open science)
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Questions?
Comments?
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BACKUP
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Data Preprocessing

• Metadata: Information about data set and its attributes

• Statistics: Mean, std. dev., outliers, clusters, correlation,… 

• Missing values and data cleansing

• Normalization: satisfy statistical and/or visualization constraints

• Continuous versus discrete: 
• Segmentation and discretization: continuous to discrete

• Nominal to ordinal mapping: discrete to continuous

• Sampling and sub-setting

• Dimension reduction: reduce to smaller number of dimensions

• Aggregation and summarization

• Smoothing and filtering: signal processing techniques

• …

If data pre-processing is performed, it is often important to (1) clearly indicate so 

and (2) provide drill-down capability. 
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Feature Engineering

• Scenarios for features: 

• Many, independent, predictive features: Easy learning

• Few, dependent, non-predictive features: Hard learning

• Applied machine learning project: 

• Much (most?) time might be spent on feature engineering

• Feature engineering is typically application-specific 

• Feature construction is often manual

• Approaches to features selection: 
• Filter: First feature selection, then machine learning 

• Wrapper: Iterate between feature selection and machine learning 

• Towards automation of feature engineering

• Holy grail of ML: Automated construction of features

• Traditional: 
• Generate: Feature construction

• Test: Feature selection
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Machine Learning: From the Fringe to 

the Center

Pat Langley’s Editorial in 
the “Machine Learning” 
journal’s  Inaugural 
Issue, 1986. 
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Feature Engineering
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Expected Value Calculation: Details

From Provost & Fawcett, p. 197. 

When classifying, 
maximize expected 

value instead of 
posterior 

probability.  

57



Metrics from Bio-Medicine

• Specificity = True positive rate = 

• Sensitivity = True negative rate = 

TP

TP+ FN

TN

TN + FP
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Metrics from Information Retrieval

• Precision =          , commonly used in information 
retrieval: 
• Eg:

• Recall =

• Eg:   

• F-Measure = harmonic mean of precision and recall

=  

TP

TP+ FP

trievedtsrOfDocumenTotalNumbe

trievedcumentsvelevantDoNumberOf

Re

ReRe

TP

TP+ FN

mentslevantDocurOfTotalNumbe

trievedcumentsvelevantDoNumberOf

Re

ReRe

2*
Precision·Recall

Precision+ Recall
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Example: on-line performance measure 

evaluation

Populations mean (best) fitness

Which algorithm is better? Why? When?

Algorithm B

Algorithm A

60



Example: averaging on-line measures 

Averaging can “choke” interesting information
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Example: overlaying on-line measures

Overlay of curves can lead to very “cloudy” figures
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ML Pipeline

• Data:  Assume that data is already available and 
structured 

• Data preprocessing: 
• Identification of parts of data set(s) to be analyzed

• Integration, cleaning, warehousing, feature construction, 
feature selection, …

• Machine learning/Data mining:  Analyzing data to 
produce a model 

• Pattern (model) evaluation:  Evaluating accuracy, 
robustness, stability, precision, … of resulting model 

• Presentation and visualization:  Present resulting 
model, perhaps in combination with data
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Machine Learning Experimentation 

and Evaluation
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ML Pipeline – Some Questions

Training
Data

(labelled/unlabelled)

Machine Learning 
Algorithm

Mathematical
Model

Model Smoothing
on Validation Data

Unseen 
Testing Data

Apply Model on 
Testing Data

Output

How to get 

raw data?  

How to get training 

data from raw data?  

How to present 

and visualize  

results?  

Which  

algorithms are 

“best”?  

Which 

mathematical 

models fit the 

application? 

How to 

evaluate?
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Which Algorithms? 

• Bayesians: learning as inference using - Bayes rule, Bayesian networks,  
and probabilistic graphical models [Duda & Hart, 1973] [Pearl, 1988] 
[Jelinek, 1997][Darwiche, 2009] [Koller & Friedman, 2009] [Blake, 2011]. 

• Symbolists: intelligence as symbol manipulation[Newell & Simon, 1976] 
[Michalski et al., 1983] [Breiman et al., 1984] [Quinlan, 1992]. 

• Analogizers:  learning by recognizing similarities [Boser et al., 1992] 
[Kolodner, 1993] [Cristianini & Shawe-Taylor, 2000].  

• Evolutionaries: use methods from evolution and genetics - evolutionary 
algorithms, genetic algorithms, and genetic programming [Darwin, 1859] 
[Holland, 1975] [Goldberg, 1989]. 

• Connectionists: reverse engineer the brain [Werbos, 1974] [Rumelhart & 
McClelland, 1986] [Bengio, 2009] [Goodfellow et al., 2016].

“Tribes” in machine  learning (and AI?) [Domingos, 2015]: 

Which  algorithm(s) is (are) “best” depends on your project –

data, goal, skills, resources, …   

66



ML: From the Fringe to the Center

Pat Langley’s Editorial in 
the “Machine Learning” 
journal’s  Inaugural 
Issue, 1986. 
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Feature Engineering
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Data Sets

• Lot’s of interesting data sets available:  
– Data is not the bottleneck is used to be just a few years ago

• Sign that you have a good data set: 
– A data set your sponsor, advisor, and you think is important

– Competition or challenge data sets (recent or currently active)

– New, exciting, timely, real-world, … data set

• Be careful with data sets that: 
– Do not exist yet (unless you’re in a data-collection project or course) 

– Require in-depth understanding of a technical/scientific area you do not 

currently understand at all (too time-consuming?)

– Are too simple (stay away from Statistics 101 data sets) 

– Do not exist in one of the commonly used file formats (there might not be 

time to write a complicated parser) 

– Have no documentation or support (you’ll be on your own)

– Are extremely large – unless you know how to handle this 
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From Raw Data to Training Data

Training
Data

(labelled/unlabelled)

Machine Learning 
Algorithm

Mathematical
Model

Model Smoothing
on Validation Data

How to get 

raw data?  

How to get training 

data from raw data?  

Preprocessing
Raw Data

(labelled/unlabelled)
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Data Preprocessing

• Metadata: Information about data set and its attributes

• Statistics: Mean, std. dev., outliers, clusters, correlation,… 

• Missing values and data cleansing

• Normalization: satisfy statistical and/or visualization constraints

• Continuous versus discrete: 
– Segmentation and discretization: continuous to discrete

– Nominal to ordinal mapping: discrete to continuous

• Sampling and sub-setting

• Dimension reduction: reduce to smaller number of dimensions

• Aggregation and summarization

• Smoothing and filtering: signal processing techniques

• …

If data pre-processing is performed, it is often important to (1) clearly 

indicate so and (2) provide drill-down capability. 
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Feature Engineering
• Scenarios for features: 

– Many, independent, predictive features: Easy learning

– Few, dependent, non-predictive features: Hard learning

• Applied machine learning project: 

– Much (most?) time might be spent on feature engineering

• Feature engineering is typically application-specific 

– Feature construction is often manual

– Approaches to features selection: 
• Filter: First feature selection, then machine learning 

• Wrapper: Iterate between feature selection and machine learning 

• Towards automation of feature engineering

– Holy grail of ML: Automated construction of features

– Traditional: 
• Generate: Feature construction

• Test: Feature selection
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Evaluation and Experimentation
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Evaluation and Experimentation
• Evaluation using data: Training, validation, testing:

– “Simple”: Split original dataset into training data and test  data, use test 

data to evaluate accuracy of machine learning model

– “Complex”: Split original dataset into training data, validation data, and 

test data

• Evaluation baselines: 
– Other ML methods – “bakeoff”

– Experimental results from literature

– Comparison against theory 

– Evaluation by human experts

– Comparison to results achieved by other software (simulation)

– …

• Evaluation depends on project type: 
– Application-oriented project:  Models induced using different ML 

algorithms – “solve application problem using different tools”  

– Method-oriented project: Datasets from different application areas –

“demonstrate generality of method across multiple data sets” 
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Evaluation

• Need a clear idea of what we are trying to 

achieve

• Should be able to connect the results of 

machine learning to the goal(s) of an 

organization (business)

• However, it is often difficult to measure the 

ultimate business goal(s), due to 

inadequate or complex data

– We can measure a surrogate in such cases

– Need to decide the surrogate through careful 

analysis

– In machine learning, the surrogate is often the 
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Evaluation: Overview

Training set: 

with labels

Test set: 

hide labels

Machine 

Learning

algorithm

Machine 

Learning 

classifier

Prediction of 

labels

• Focus on classifiers
• Evaluating classifiers: 

accuracy
• Other evaluation 

topics: 
• Unbalanced classes
• Cross-validation
• Area under the curve 

Correct

?

YesNo

True positives,  

True negatives 

False positives, 

False negatives 
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Evaluating Binary Classifiers

• Assumption: binary (0/1, Yes/No, Positive/Negative) 

classification 

• Positives and negatives - in machine learning 

terminology: 

– Negatives are the uninteresting outcomes 

– Positives are the outcomes of interest (sometimes few)

• We have the following 4 possibilities:

– False Positives (FP): Test incorrectly reports a value as positive

– True Positives (TP): Test correctly reports a value as positive

– True Negatives (TN): Test correctly reports a value negative

– False Negatives (FN):Test incorrectly reports a value as 

negative

Our aim is to reduce FPs and FNs. The number of FPs may dominate 

the number of FNs, but the cost of mistakes made on FNs may be 

higher. (More about this later.) 
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Confusion Matrix

• Confusion Matrix :

– An n x n matrix for a classification problem 

with n classes

– For binary classification: 2 x 2 confusion 

matrix

– Main diagonal (green) contains the correct 

outputs of the classifier
False positive 

True positive 

True negative 

False negativePositive (1)

Negative (0)

Negative (0)Positive (1)

Predicted class

Actual 

class

Comes 

from 

binary 

classifier 

Comes 

from test 

data or 

“real 

world”
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Evaluation Metric: Accuracy

• Define (based on the confusion matrix): 

– TPs: Number of true positives 

– TNs: Number of true negatives 

– FPs: Number of false positives 

– FNs: Number of false negatives 

• Accuracy a - proportion of correct 

decisions

• A typical goal of machine learning is to maximize 

accuracy a and minimize error rate e

ea
FNsFPsTNsTPs

TNsTPs
−==

+++

+
1
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Beyond Accuracy

• Accuracy, and closely related metrics, are 

good starting points for evaluation

• However, there are some potential 

problems: 

1. Unbalanced classes

2. Desire to use “test data” during training

3. Sensitivity to varying parameters 

• Below we study these problems in more 

detail, and sketch solutions 
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Accuracy and Unbalanced 

Classes
• Is plain accuracy sufficient to evaluate a 

model?

• Perhaps not.  In classification problems 

where one class is rare, the class 

distribution becomes highly skewed

– E.g.: credit card transactions

– 100 transactions: 98 legitimate, 2 fraudulent

– Classifier classifies all transactions as 

legitimate 

– Accuracy a = 98/100 = 98%

– Is this a good classifier?
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Unequal Costs
• Simple classification accuracy makes no 

distinction between FPs and FNs

• In applications, the gravity of FPs versus 

FNs can vary significantly

• Examples: 

– In medical diagnosis: a FN (a disease was not 

caught) can be life threatening 

– In fraud detection: a FP (a transaction was 

flagged as fraudulent but was not) can affect 

customer relations and involve legal issues
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Expected Value
• Expected value is the weighted average of 

all possible outcomes, where the weight is 

the probability of occurrence

• Where: 

– oj is a possible decision outcome, 

– P(oj) s its probability, and 

– V(oj) is its value

Ev = P(oj )*V(oj )å
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Using Expected Value to 

Evaluate a Classifier

• How do we decide if a data driven decision 

is better than a decision taken intuitively? 

• Expected value can – given information 

about outcomes, probabilities, and their 

values – be used to determine best 

decisions for a particular model

• Expected value aggregates all possible 

outcomes to decide whom to target or 

where to spend84



Expected Value Calculation: 

Details

From P&F p. 197. 

When classifying, 

maximize 

expected value 

instead of 

posterior 

probability.  
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Metrics from Bio-Medicine

• Specificity = True positive rate = 

• Sensitivity = True negative rate = 

TP

TP+ FN

TN

TN + FP
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Metrics from Information Retrieval

• Precision =          , commonly used in 

information retrieval: 

– Eg:

• Recall =

– Eg:   

• F-Measure = harmonic mean of precision 

and recall

=  

TP

TP+ FP

trievedtsrOfDocumenTotalNumbe

trievedcumentsvelevantDoNumberOf

Re

ReRe

TP

TP+ FN

mentslevantDocurOfTotalNumbe

trievedcumentsvelevantDoNumberOf

Re

ReRe

2*
Precision·Recall

Precision+ Recall
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Cross-Validation

Training Data

(labelled/unlabelled)

Statistical 
Learning 
Algorithm

Statistical 
Model

Model Smoothing
on Validation 

Data

Unseen 
Testing Data

Apply Model 
on 

Testing Data

Output

Comes 

from test 

data or 

“real 

world”

SELECTIO

N
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Cross-Validation: Details 

• K-Fold Cross-

validation:

– Create a K-fold 

partition of the 

dataset

– Perform K 

experiments as

• Use K-1 folds for 

training and the 

remaining one for 

• A model selection technique: asses how 

the predictions will generalize to an 

independent dataset

Intelligent Sensor Systems

Ricardo Gutierrez-Osuna

Wright State University

7

K-Fold Cross-validation

Create a K-fold partition of the the dataset

For each of K experiments, use K-1 folds for training and the remaining 

one for testing 

K-Fold Cross validation is similar to Random Subsampling 

The advantage of K-Fold Cross validation is that all the examples in the 

dataset are eventually used for both training and testing

As before, the true error is estimated as the average error rate

Total number of examples

Experiment 1

Experiment 2

Experiment 3
Test examples

Experiment 4

å
=

=
K

1i

iE
K

1
E

Test examples

* http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf
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Leave-One-Out Cross Validation
• Degenerate case of K-Fold Cross 

Validation

– K = total number of examples (N)

• For a dataset with N examples, perform N 

experiments

– Use N-1 examples for training and the 

remaining example for testing

– Average error rate:

Intelligent Sensor Systems

Ricardo Gutierrez-Osuna

Wright State University

8

Leave-one-out Cross Validation

Leave-one-out is the degenerate case of K-Fold Cross 

Validation, where K is chosen as the total number of examples

For a dataset with N examples, perform N experiments

For each experiment use N-1 examples for training and the remaining 

example for testing

As usual, the true error is estimated as the average error rate on 

test examples

å
=

=
N

1i

iE
N

1
E

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Experiment N

Single test example

90



Receiver Operating Characteristic 

(ROC)
• ROC curve: TPR 

versus FPR plot 

representing the 

performance of a 

binary classifier as 

its discrimination 

threshold is varied

False Positive Rate (FPR)
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• True positive rate (TPR): 

recall

• ROC analysis provides 

tools to select possibly 

optimal models

Truth: 

positive

Truth: 

negativ

e

Predicted

: positive

True 

positive

False 

positive

Predicted

: 

negative

False 

negative

True 

negative
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Area Under the Curve (AUC)

• Probability that a classifier will rank a 

randomly chosen positive instance 

higher than a randomly chosen 

negative one
• Classification analysis: 

which model predicts the 

classes best?

• Model with higher AUC

• Recent research1 shows: 

AUC is noisy as a 

classification measure

1. Hanczar, Blaise; Hua, Jianping; Sima, Chao; Weinstein, John; 

Bittner, Michael; and Dougherty, Edward R. (2010); Small-sample 

precision of ROC-related estimates, Bioinformatics 26 (6): 822–830

http://stats.stackexchange.com/questions/132777/what-does-

auc-stand-for-and-what-is-it
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Summary

• Accuracy, and closely related metrics, are 

good starting points for evaluation

• To handle limitations of accuracy, we have 

: 

1. Unbalanced classes: 

2. Desire to use “test data” during training: 

cross-validation

3. Sensitivity to varying parameters: 

• Other evaluation problems: User studies, 

evaluation of “business impact,” … 93



Questions?

Faculty
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